

Categorical Systems Theory
is the study of dynamical system (and presentations of them)
using categorical methods.

· We study how systems can be composed:

What is a System? (and how do we compose them?)

O A Moore Machine (aka deterministic automaton)? Composed by setting parameters according to variables of state.

- · A circuit?
- » A population flow gaph?
- o A Labelel transition System?

Composed by plugging in exposed ports.

- o A. Hamiltonian System?
- OA Lagrangian System?

o A Willems-style type of behaviors? Composed by Sharing variables.

System? (and how do we compose them?) What is a Parameter Setting Composed by Setting Pourameters according to variables of state. · A system of differential Equations? O A Moore Machine (aka eleterministic cutomaton)? o A Marka decision process? Port Plugging Composed by plugging in exposed ports. o A circuit! A population flow gaph? o A Labelel transition System? Variable Sharing Composed by Sharing variables. o A Willems-Style type of behaviors? o A Hamiltonian System? OA Lagrangian System? Each of these is a paradigm of composition What is a System? (and how do we compose them?) · A system of differential Equations?

- O A Moore Machine (alka eleterministic eutomaton)?
- o A Marka decision process?
- o A circuit?
- o A Labelel transition System?
- o A Willems-Style type of behaviors?
- o A Hamiltonian System?
- OA Lagrangian System?

Each of these is a doctrine of system in the given paradism.

Parameter Settings
Composed by setting
parameters according
to variables of state.

Variable Sharing
Composed by
Sharing variables.

Each of these is a paradigm of composition

Abstract Nonsense

Definition: A paradign of composition P consists of a Lax monoidal 2-functor

Abstract Nonsense

Definition: A paradigm of composition P consists of a Lax monoidal 2-functor

E.g.: Indexed Cat w/Section Parameter Setting Db/Ix--Finitely Co Complete Cat * Port Plussing Db/Ix

Finitely Complete Cat Variable Sharing > Obl Ix -

All of these factor through

Dbl Fun Vertical Slice Dbl Ix

patterns

with composition partterns

 $Y_1 \xrightarrow{f_2} Y_2$

The Vertical Slice Construction
Given a Double Functor $F: \mathcal{G}_0 \to \mathcal{G}_1$, form a Doubly indexed cartegory Recall: A Unital Lax Double Functor into the Double Cat of bimodules. Categories, Functors, and Obimodules.
D FA FB (
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Theorem: or gives a product preserving Z-functor J: DbIFun -> DbIIX
The Port Plugging Paradigm (Example: the doctrine of circuits)
A Doctrine for the fort plugging foredism is a pair (e,p) of a finitely coccomplete category e "of systems" and an object pee, the "port".
Eg: Following A Compositional Framework for Passive Linear Networks, Define Circuit: = Graph/BR (Circuits of linear resistor and let $\rho = \bullet$ be a single node.
Definition: A paradign of composition P consists of a Lax monoidal 2-functor
Dectrine Sysp OblIx - Monoidal 2-category of P-Doctrines Sysp Cartesian 2-category of Apoly indexed categories
Finitely Co Complete, Port Plugsing > Ob IIX (C,p) - Cat

The Port Plugging Paradigm (Example: the doctrine of circuits) A Doctrine for Mr Port Plugging Perachem is a pair (e, p) of a finitely cocamplete category C "of systems" and an object pee, the "port". Eq: Tollowing A Compositional Framework for Passive Linear Networks John C. Baez Brendan Fong, Define Circuit: = Graph/BR. (circuits of linear resistors) and let $p = \bullet$ be a single node. o For a doctrine (e,p) in the port plugging paradigm, we define (e,p) in the port plugging paradigm, we define (e,p) in the port plugging (e,p)Sys(C, P): = Cospan(Fin) $\xrightarrow{\Box P}$ Cospan(e) $\xrightarrow{\sigma(cospan(e))}$ Cot $\xrightarrow{\varphi}$ Eg: Sys (Circuit, .) (B) = $\begin{cases} 3n \\ 10n \\ 2n \\ 2n \end{cases}$

The Port Plugging Paradigm (Example: the doctrine of circuits)

· A Doctrine for Mr Port plugging Percelism is a pair (e,p) of a finitely coccomplete category e "of systems" and an object pee, the "port".

Eg: Following A Compositional Framework for Passive Linear Networks Dekine Circuit: = Graph/BR. (Circuits of linear resistors)

and let $p=\bullet$ be a single node. o For a doctrine (e,p) in the port plugging paradigm, we define $-(\sqrt[4]{g})$

Sys(C, P): \equiv Cospan(Fin) $\stackrel{\square P}{\hookrightarrow}$ (ospan(e) $\stackrel{(*)}{\sim}$ Cot $\stackrel{(*)}{\sim}$ Cospan(e) $\stackrel{(*)}{\sim}$ Cot $\stackrel{(*)}{\sim}$ Cospan(e) $\stackrel{(*)}{\sim}$ Cot $\stackrel{(*)}{\sim}$ Cospan(e) $\stackrel{(*)}{\sim}$

Hypergraph Categories Brendan Fong and David I. Spivak

Other Port Plugging Doctrines

o Population flow graphs, alea continuous	time Markov processes
A Compositional Framework for Markov Processes John C. Baez Brendan Fong Blake S. Pollard	COARSE-GRAINING OPEN MARKOV PROCESSES John C. Baez Kenny Courser
C = Category of Marka Processes	s and course grainings, $\rho = \bullet$
Reaction Networks or Petri Nets	
A Compositional Framework for Reaction Networks John C. Baez Blake S. Pollard	
C = Category of petri nets	Graph/
Lakelled transition Systems: C=	Graph of Labels
ariant: Multisorted ports	
he Daciable Sharing	Parta Digm (Example: Behavior Type
. Doctrine for the variable sharing open	radign is a finitely complete categ:
Temporal Type Theory A topos-theoretic approach to systems and behavior By Patrick Schultz David I. Spivak	ine B = topos of behavior types (or, just think of Set)
Definition: A paradigm of composition P	Consists of a Lax monoidal 2-functor
Doctrine Sysp - Monoidal 2-rategory of P-Soctrines	Ob IIX Cartesian 2-category of aboutly indexed cutegories
Finitely Complete Variable S	haring > Ob Ix Sys(e): Span(e) -> Cat

Takeaways & Directions
o (Moroila) Doubly indexed categories are a useful algebra for composing systems and the maps between them. o Paradigms of composition give uniform & straightforward ways to produce there doubly indexed categories.
More examples at Lagrangian Systems of Hamiltonian and Lagrangian Systems open systems in classical mechanics John C. Baez ¹ , David Weisbart ² , and Adam Yassine ³ Labelled Graphs
Paradigns. Graph — Finitely Cocomplete, John Port Alugains Coopen(-) La Charing Uertical
Tangart Cat of Display Maps Tour Differential Continues the Continues Continues the
Takeaways & Directions
O (Morbild) Doubly indexed categories are a useful algebra for composing systems and the maps between them. O Doubly indexed functors include: O Approximations: Euler Method, Runge-Kutta Method Timothy Ngotiaoco Runge-Kutta Method Timothy Ngotiao